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ABSTRACT 

This paper presents a reliability-based damage tolerance 
(RBDT) methodology that employs a systematic 
approach for probabilistic fracture-mechanics damage 
tolerance analysis subject to uncertainties in initial flaw, 
probability of detection (POD) and other random 
variables.  By integrating a basic probabilistic analysis 
engine, a finite element analysis code, and a fatigue 
crack analysis code, the RBDT methodology has been 
implemented in a prototype software and used to assess 
the applicability and benefits of applying RBDT 
methodology to supplement the safe-life and 
deterministic-based damage tolerance design methods.  

A new efficient and accurate probabilistic method, built 
on a two-stage conditional importance sampling 
approach, is presented.  The first stage computes risk, 
without inspection, using the most probable point (MPP) 
-based importance-sampling technique combined with a 
new error-checking method. The second stage 
computes risk, with inspection, by simulating inspection 
and maintenance effects using the samples generated 
from the Stage 1 failure domain.  The error-checking 
procedure addresses the major shortcoming in the MPP-
based approximation methods and leads to a robust and 
efficient sampling method.   

For inspection optimization and maintenance planning, 
this paper proposes a strategy to significantly speedup 
the optimization process by re-using the crack growth 
histories for risk and risk reduction computations without 
additional stress and life analyses. 

The results from several demonstration examples 
suggest that the improved two-stage importance-
sampling method is well suited for RBDT analysis, 
particularly with inspection planning. 

INTRODUCTION 

Currently most computational fracture mechanics 
methods and tools used in the design of rotorcraft 
structures rely on deterministic analysis.  In reality, many 
design parameters, including defect or flaw 
characteristics, crack growth law, crack detection, loads, 
and usages are statistical in nature.   To account for the 
uncertainty in a deterministic-design framework, 
conservative assumptions based on the safety-factor 
approach and the worst-case scenarios are often 
employed to help ensure structural reliability and safety.  
However, in the deterministic framework, the reliability 
and safety cannot be quantified.  In addition, it is fair to 
point out that the conservatism of a deterministic 
approach can result in suboptimal design by (1) forcing 
the application of an unnecessary certification 
maintenance requirement or (2) forcing the designer to 
use overly conservative design philosophies instead of 
the preferable more reliable and robust damage 
tolerance philosophy.   

A comparison between deterministic and probabilistic 
damage tolerance analyses is shown in Table 1.  As 
shown, the deterministic approach applies, either 
explicitly or implicitly, the safety factor or bounding 
approaches in several key design variables.  As a result 
of the safety factors and bounds, reliability can, in fact, 
be designed in, but the degree of reliability cannot be 



quantified.  On the other hand, the probabilistic approach 
requires relatively more precise characterizations of the 
input uncertainties based on data and expert knowledge.  
This approach can provide quantitative risk information 
to complement deterministic design methodology and 
has the potential to reduce unnecessary conservatism. 

Table 1. Deterministic vs. Probabilistic Damage 
Tolerance 

 Deterministic Probabilistic 

Principles Bounds, Safety 
Factors 

Probability & 
confidence

Flaw/defect size A given crack size Distribution of crack 
size 

Existence Probability = 1 0 <= Probability <= 1  

Inspection schedule Life/N Max. risk reduction 

Safety measure Safety margin Reliability = 1 – pf 

Other variables Bounds, Safety 
Factors 

Distributions 

 
In this paper, the focus of the RBDT methodology 
development is on rotorcraft structures.  The applicability 
of RBDT and the computational efficiency and accuracy 
of the two-stage conditional importance-sampling 

method will be assessed based on simple but 
representative rotorcraft structures with realistic 
rotorcraft load spectra.   

RELIABILITY-BASED DAMAGE TOLERANCE 
METHODOLOGY 

RBDT ANALYSIS FRAMEWORK 

Rotorcraft structures are subjected to in-service 
inspections and subsequent maintenance actions, if 
warranted, to maintain reliability and minimize risk.  
Since the effectiveness of an inspection depends on the 
POD and the location and size of a crack, the optimal 
design and maintenance of reliable structures requires 
methods to evaluate time-dependent reliability analysis 
subject to inspections.  For practical purposes, such 
methods should be fast to provide a quick turnaround of 
reliability analysis for design and inspection planning.     

Based on the recent FAA research work for risk 
assessment of aircraft turbine engines [Ref. 1] and the 
earlier NASA Probabilistic Structural Analysis Methods 
program [Ref. 2], a framework for rotorcraft RBDT has 
been developed and summarized in Figure 1. 
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Figure 1. Rotorcraft Reliability-Based Damage Tolerance Analysis Framework 

A comprehensive RBDT framework should include a 
wide range of uncertainties including: 

• Random or uncertain parameters in material (e.g., 
threshold of the stress-intensity factor, modulus of 
elasticity) 

• Defect or flaw (including size, shape, and location, 
and the frequency of occurrence) 

• Loading, type of usage (with frequency of 
occurrence) 

• Finite element model (including modeling error) 
• Crack growth model (including modeling error) 
• Maintenance (including inspection schedules, 

frequency of inspections, probability of detection 
curves, repair/replacement methods and effects) 

• Human factors 



The effects of human factors can be reflected in 
modeling errors, PODs, and other random variables by 
inflating the standard deviations.   

PROBABILITY OF FAILURE FORMULATION 

Given an initial flaw, the flaw size and stress-intensity 
factor K will increase with the loading cycles.  A fracture 
failure will occur when K reaches or exceeds the fracture 
toughness Kc:  

1( , , , )n s cK X X N K⋅ ⋅ ⋅ ≥  (1) 

 
The stress-intensity factor is dependent on the service 
life, sN , and the random variable vector X  that includes 
all the random variables except inspection-related 
parameters.  An alternative failure limit state is: 

( , ) ( )s f Sg N N N= −X X  (2) 

 
where fN  is the fracture mechanics life-to-failure.  
Without considering inspections, the probability-of-failure 
without inspection, o

fp , expressed as an integral, is: 

Pr.[ ( ) ] ( )
f

o
f f s

N Ns
p N N f d

≤
= ≤ = ⋅⋅⋅∫ ∫ XX X X  (3) 

 
in which ( )fX X  is the joint probability density function of 
the input random variables.  When the limit state function 
involves finite element and other numerical models, 
computing probability of failure can be extremely 
computation-intensive. If inspections were considered, 

fp  would be even more difficult to compute 

because fN would be a function of inspection time, 
POD, and post-inspection actions (repair or 
replacement).  For example, for a single-inspection case, 
the fp  just before the inspection can be computed 

using Eq. 3 with sN  set at the time of inspection. 
Immediately after the inspection, the defect size 
distribution needs to be adjusted based on the POD and 
repair/replacement plans such that the new population of 
the defects is a mix of the two populations.  The fp after 
the inspection time needs to be computed by re-applying 
Eq.3 with an adjusted ( )fX X .  The sum of the two (just 
before and after the inspection) integrals is the 
cumulative fp  (Ref. 3) with inspection.  The difficulty in 
this summation approach is to compute the 
adjusted ( )fX X .   
 
While there are many fast approximation methods (such 
as the first-order reliability method) for solving Eq.3, no 
general approximate solutions exist for computing 

fp with inspection.  The method proposed in Ref. 4 
adjusts Eq. 3 by multiplying ( )fX X  by the probability of 
non-detection (PND), conditioned on the inspection time, 
i.e., 

( ) ( | ( ))
f

f
N Ns

p f PND a t d
≤

= ⋅⋅⋅∫ ∫ X X X X  (4) 

 
and computes Eq. 4 by an approximation procedure 
similar to but cruder than the FORM method.  This 
approach implicitly assumes that a defect that would fail 
if no inspections, will not fail if the defect is allowed to 
grow to infinity and is found from any of the inspections.   
The approach also implies that no future failure will 
occur after the defect has been detected.  In reality, 
some defects may fail early and be unavailable for future 
inspections, and when a defect has been detected, there 
is no guarantee that a repair or replacement will 
eliminate a future failure. Therefore, the approach is 
nonconservative. 

Eq. 4 suggests the high level of difficulties in analytically 
treating general inspection and maintenance effects. An 
approach that includes some kinds of sampling-based 
simulation, such as the conditional importance-sampling 
method described below, seems more promising. 

AN IMPROVED TWO-STAGE, CONDITIONAL 
IMPORTANCE-SAMPLING METHOD  

The approach described here combines the MPP-based 
methods (e.g., FORM), the importance sampling, and a 
two-stage (without and with inspection) conditional 
probabilistic analysis process.   

When a reliability problem involves inspection and 
replacement, the FORM approach becomes ineffective 
because it is computationally difficult to update the 
defect distribution after each inspection and 
maintenance.  The DARWIN approach [Ref. 1] 
addressed the problem by using a two-stage approach, 
where in the first stage, the pf without inspections is first 
calculated by a three-dimensional numerical integration 
(and avoided the FORM approximation), and in the 
second stage, conditioned on the Stage 1 result, 
importance sampling is conducted where the samples 
are generated using conditional distribution functions. 
This approach was both accurate and fast, but it was 
tailored for three random variables (defect size, stress 
scatter factor, and life scatter factor) and was intended 
for the turbine rotor applications.  However, the 
numerical integration approach is not well suited for 
problems with a larger number of random variables due 
to the difficulty in high-dimension integration.  In addition, 
the DARWIN approach assumed the stress to be a user-
defined scatter factor multiplied by a single finite element 
(FE) stress result.  There was no provision for integrating 
with stochastic FE-based analysis. 



For rotorcraft RBDT however, more random variables 
are generally needed and, therefore, more general 
methods are required. 

This study has generalized the DARWIN and the special 
version of FORM approach [Ref. 4] by using an error-
controlled FORM procedure to deal with more random 
variables and with more general maintenance actions 
(remove, repair, or replacement with new/old parts).   A 
key feature of the new error-controlled procedure is that 
it extends the service life and generates more samples 
for checking the FORM results, including not only the 
probability of failure but also the MPP.  Having a robust 
error-control/checking procedure is critical because it 
has been widely recognized by the aircraft industry that 
the FORM method may produce large errors for some 
highly nonlinear or ill-behaved functions without 
providing warnings.  Lack of an error-checking 
procedure was, in fact, a major reason DARWIN did not 
adopt the FORM approach.  

To summarize, the DARWIN approach computes the 
probability of failure in three steps.  The first step 
computes the probability of failure without inspections, 

o
fp .  The second step simulates inspection by using 

random samples generated only from the failure region 
of Step 1.  Finally, the conditional probability of failure 
from Step 2 is multiplied by the o

fp  from the first step to 

reach the final probability of failure with inspection, fp .  
The concept of the approach is illustrated in Figure 2, 
assuming that the defect size is the only random variable 
in the crack growth model.       
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Figure 2. Concept of the Importance-Sampling-
Based Simulation Method 

The proposed generalized approach for more than three 
random variables consists of four steps.  First, the 
inspection-free risk o

fp  is computed using the standard 
FORM method, i.e., compute the MPP and use the 
hyper-tangent surface at the MPP to estimate the 
probability of failure [Refs. 5-6].   The more accurate 

second-order reliability methods can be used with 
additional computations.    

In Step 2, a second FORM analysis is conducted for an 
adjusted, more conservative, service life.  The second 
limit state is defined as: 

( , ) ( )A s f Sg N N A N= − ⋅X X  (5) 

 
where A > 1  is an adjustment factor selected to allow for 
generating more samples in Step 3 to check the solution 
from Step 1. The selection of A > 1 ensures the second 
failure region contains the first failure region.  The value 
of A can be based on the FORM result to predict a 
slightly larger (say 20% larger) fp .  Therefore, the 

adjusted probability of failure, A
fp , is greater than o

fp .   
Because we can use the first MPP as the initial guess to 
search for the second MPP, the computational cost for 
the second FORM solution is expected to be significantly 
smaller than the original FORM solution. 

In Step 3, a number of samples is selected to generate 
failure samples using the second MPP from Step 2.  
These samples are used for the following analyses: 

(1). The samples with lives shorter than SN  are used to 

compute a new o
fp  using: 

Number of samples with lives <=  = (2nd FORM)* 
Total number of samples

o S
f f

Np p   
(6) 

 
If the calculated number is close to the first FORM 
solution, it should provide some improved confidence 
that Eq. 6 is probably a good estimate.  In addition, the 
first FORM MPP should be compared with the sample-
based MPP to ensure that a correct MPP has been 
found.  On the other hand, if the two numbers are 
significantly different, the (first) FORM solution is 
probably not accurate and Eq. 6 with larger A values and 
more samples should be used.  For the cases where 
FORM does provide reasonably accurate solutions, Eq. 
6 provides an efficient way to check and enhance the 
FORM solution.   

(2). The samples with crack growth lives shorter than 

SN  are used to simulate the inspection and 
maintenance processes, and compute conditional 
probability of failure, c

fp , i.e., the probability of failure 
with inspections conditioned on the population of those 
components with lives shorter than SN .  The simulation 
method is illustrated in Figure 3.  For simplicity, A = 1 is 
used in Eq. 5.  All the defects that violate the limit state 
are grown to failure.  The histories of the crack growths 
should be recorded for later use. 
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Figure 3. Compute Pf With Inspection Using 
Conditional Probability and Importance Sampling  

For each sample, at each inspection, the POD is used to 
simulate the effect of inspection.  When a defect has 
been detected, the defective component will be replaced 
or repaired using the corresponding defect distributions 
to generate a new defect size, and the crack growth 
process will continue until a failure occurs, the next 
inspection time is reached, or the service life is reached.   

Finally, Step 4 computes the probability of failure with 
inspections as follows: 

c o
f f fp p p= ⋅  (7) 

 
The proposed method can be applied to many structural 
systems as long as the FORM solution provides a 
reasonable approximation such that more accurate 
solutions can be estimated using Eq. 6. 

Step 2, proposed above, is believed to be a more robust 
and accurate approach.  However, because of the time 
constraint, this approach has not been implemented in 
the prototype software.  Instead, A = 1 in Eq. 5 has been 
implemented, which is sufficient for the demonstration 
examples. 

FLAW LOCATION UNCERTAINTY AND RISK 
INTEGRATION  

Generally, flaws are randomly distributed within a 
structural system.  For multiple components and multiple 
defect locations, a system reliability method that 
accounts for multiple g-functions is needed.   For 
example, if a system consists of m possible failure 
events, the system risk pf is the probability union of the 
m failure events: 
 

1 2Pr .[ ]f mp F F F= ∪ ⋅⋅  (8) 

 

The failure events are correlated if the g-functions have 
common random variables such as loads.  For 
independent or weakly correlated events, the above 
equation can be simplified as: 
 

1 21 (1 )(1 ) (1 ) (1 )f i mp p p p p= − − − ⋅⋅ − ⋅⋅ −  (9) 

 
For small ip , the above equation can be simplified as: 
 

1

m

f i
i

p p
=

= ∑  
 
(10) 

 
which can be written as: 
 

1

m
c

f i i
i

p pα
=

= ⋅∑  
 
(11) 

 
where iα  is the defect occurrence probability and c

ip  is 
the (conditional) probability of failure, given the defect.  
Eq. 11 allows the flaw location uncertainty to be modeled 
by treating a component as a summation of multiple 
zones where each zone potentially has a flaw with an 
assigned probability.  An advantage of the zone-based 
approach is that it allows zone-dependent parameters.    
 

EFFICIENT INSPECTIOIN TIME OPTIMIZATION 

The ultimate objectives of the inspections, of course, are 
to detect and replace/repair defective parts before they 
fail. Theoretically it is possible to inspect and 
replace/repair as frequently as needed so that the 
growth of risk over time is only due to the increasing 
chances of extreme loads but not due to strength 
reduction.  In practice, the number of inspections is 
necessarily constrained by the costs and the equipment 
downtime.  In this paper, we will confine the discussion 
to a single inspection and focus on how to determine the 
optimal inspection time.   

Assuming one inspection at t =tINSP, the POD of the 
entire population is: 
 

Survived parts Insp
0

Survived parts

Population POD 

( ) ( ( ))

[ ( )]

PODp

POD a f a t da

E POD a

∞

≡

= ⋅

=

∫  

 
 
(12) 

 
where Survived parts( ( ))INSPf a t is the probability density 
function (PDF) of the survived defective parts at the time 
of the inspection.  These detective parts include the 
parts that would not fail at t =tService.  If we limit the 
survived pdf to those “critical parts”, defined as those 



parts that have survived past t =tINSP but would fail by 
t=tService, if not detected, the probability of effective 
detection is: 
 

Crit. parts Crit. parts Insp
0

Crit. parts

Probability of Effective Detection

( ) ( ( ))

[ ( )]

Dp

POD a f a t da

E POD a

∞

≡

= ⋅

=

∫  
 
 
(13) 

 
The probability of the critical parts from the original 
population is: 
 

Service Insp

Probability of Critical Parts 

( ) ( )
C

o o
f f

p

p t p t

≡

= −
 

 
(14) 

 
Therefore, the maximum reducible risk is the product of 
Eq. 13 and Eq. 14: 
 

Service Insp Crit. parts

Reducible Risk

[ ( ) ( )] [ ( )]

r

C D

o o
f f

p
p p

p t p t E POD a

≡
= ⋅

= − ⋅

 
 
(15) 

 
and the risk with inspection at t = tService is: 
 

ServiceRisk With Inspection ( )o
f rp t p= −  (16) 

 
Eq. 15 is the maximum reducible risk because, by 
chance, the replaced/repaired parts can still fail by t = 
tService.  However, assuming small probability of failure 
and independent events, the probability of the “second” 
failure will be significantly smaller. For the purposes of 
efficient approximation, this secondary probability will be 
ignored.  

It is important to point out that Eq. 15 suggests that by 
saving the crack growth histories for all the importance 
samples without inspections, we can use the stored 
time-dependent defect sizes to compute risk reduction 
for any t < tService without additional stress and life 
analyses. Thus, Eq. 15 is an efficient approximate 
formula for inspection optimization.   

FURTHER COMPUTATIONAL RELIABILITY 
ANALYSIS ISSUES 

Because of the unique loading environments in rotorcraft 
maneuvering relative to aircraft missions, existing 
reliability-based methods and codes for turbine engine 
and fixed-wing aircraft are not directly applicable.  At 
present, probabilistic approaches are more widely used 
in designing aircraft engines and are also increasingly 
being used in designing other high-cost products such 
as aerospace and automotive systems.  In selecting 
reliability methods, there are two important factors to 
consider: efficiency and accuracy.  At present, the 
efficient probabilistic methods such as the FORM 
method work well for smooth, well-behaved functions.  

Unfortunately, for nonsmooth or highly nonlinear 
functions, the MPP-based algorithms may produce large 
errors without providing error estimates or any warnings.  
On the other hand, the brute force Monte Carlo method 
can ensure that the error is controlled, but the analysis is 
time consuming and, in most FE-related applications, is 
impractical to use. 

In general, a rotorcraft RBDT analysis requires a 
probabilistic finite element analysis and a probabilistic 
fracture mechanics analysis that can be very 
computationally demanding.  To reduce the CPU time, 
the following computational strategies can be 
recommended to help achieve the balance of efficiency 
and accuracy. 

RESPONSE SURFACE APPROXIMATION 

Response surfaces are approximate models of the 
original models and are useful for approximating well-
behaved functions.  For example, if the stress response 
is dominated by the loads, a quadratic polynomial 
equation model may be an adequate representation of 
the original stress function over the range of input 
variations.  However, in general, a checking procedure is 
needed to control modeling errors.   

DECOUPLED STRESS AND LIFE ANALYSES 

If fracture mechanics life is weakly related to the random 
parameters that cause the stress variation, the stress 
and life responses can be decoupled.  This allows us to 
have the options to 

• develop a stress response surface first and use it 
later for probabilistic life analysis. 

• conduct a full probabilistic stress analysis to develop 
stress distribution and store it for probabilistic life 
analysis. 

The second option is more accurate but usually requires 
more computational time.  For a specific application and 
with enough user experience, it may be possible to use 
the nominal stress (based on one FE run) as the mean 
stress and assume a coefficient of variation to develop a 
lognormal or other appropriate distributions.  This option 
requires only one FE stress analysis.  However, the 
approximation is adequate only if the stress variation is 
not a major contributor to the probability of failure.  

MPP-BASED METHODS WITH ERROR CHECKING 

To address the lack of error control issue, one strategy is 
a progressive MPP method [Ref. 7], which progressively 
applies better MPP approximation models to check 
solution convergence.  The approach is expected to 
provide a confidence indicator for the analysis result.   

RBDT PROTOTYPE SOFTWARE  



An ideal tool for Rotorcraft RBDT should have the 
following major capabilities: 

• Efficient, accurate, and robust probabilistic analysis 
methods 

 
• Probabilistic engine seamlessly integrated with 

major FE and fracture mechanics (FM) codes for 
various critical components 

 
• Fully integrated and automated probabilistic life 

analysis with inspection 
 
For broader applications, the ideal tool should be 
modularized such that the three key modules, 
probabilistic analysis, FE analysis, and fatigue fracture 
mechanics, are replaceable by user-preferred codes, 
provided the input and output of the codes follow certain 
file formats. 

In this study, the ANSYS code was selected for the finite 
element stress analysis and the NASGRO (Version 3.0) 
code was selected for the fracture mechanics analysis.  
However, a modularized batch mode software 
framework has been developed to interface with other 
codes. 

An extended research version of ProFES for the 
feasibility study was developed by (1) adding batch 
mode capability and generic function interface, (2) 
interfacing with FE and FM codes using text I/O files 
(generic function interface), (3) adding new capabilities 
to analyze multiple structures or one structure with 
multiple defect locations, (4) adding inspection 
simulation using importance sampling, (5) adding 
routines to postprocess sampling-based sensitivities, 
and (6) adding user-defined defect size distribution and 
POD.    

ROTORCRAFT DEMONSTRATION EXAMPLES 

Two examples are selected to demonstrate the RBDT 
methodology for rotorcraft applications.  These are the 
first set of examples that are representative but simple 
enough for the feasibility study. Additional industry 
examples should be used to further test and improve the 
methodology and identify critical data needs. 

The first example is a plate model with 190.5 hours of 
FELIX/28 rotorcraft load spectra, and the second is a 
spindle lug model with a 1-hour rotorcraft load spectra.  
To simplify the demonstrations, the detected defective 
parts are replaced by perfect parts with no defects.  
Note, however, the RBDT prototype software can 
simulate repair and replacement by using user-defined 
defect size distributions.    

PLATE MODEL 

The structure model selected to represent a rotorcraft 
structural part is a plate with a hole, as shown in Figure 
4.  A corner crack is assumed at the hole as indicated. 

 

 

 

 
 

Figure 4. Plate Model (Ref. 8) 
 
The selected rotorcraft load spectra is FELIX/28, as 
shown in Figure 5.   The spectra are based on the main 
rotor blade of a military helicopter with four mission types 
and 140 flights [Ref. 8]. 
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Figure 5. Felix/28 helicopter load spectra (Ref. 8) 

 

Plate Model Using ANSYS FE Stress Model 

To demonstrate a completely integrated FE-based 
RBDT analysis, we developed a ¼ model of the plate 
using the ANSYS software, even though an analytical 
stress solution was available.  The ANSYS model, the 
load spectra, and the NASAGRO model are summarized 
in Figure 6.  The random variables are defined in Table 
2.  The initial crack size distribution is based on the 
equivalent initial flaw size (EIFS) distribution derived 
from the stress-life experiment, as described in Ref. 9.    

This example represents a “full” stochastic stress and 
crack growth RBDT analysis with random variables in FE 
and crack growth models as well as POD. The 
inspection time is fixed but can easily be modeled as 
random. The selected mean thickness of 4.54 mm 
results in pf  = 0.1, a probability large enough to allow the 
analysis to be done within a reasonable time frame.
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Figure 6.  Plate With Hole Results Using ANSYS FE Model (Full RBDT Analysis) 

 

Table 2. Random Variables for the Plate Model 

  Distribution Mean Std. Dev. COV(%) 
Thickness (mm) LN 4.54 0.023 0.51 

Max. Load (N) N 23658 2200 9.30 
Initial Flaw 
Size (mm) User-defined 0.074 0.0224 30.2 
Delta Kth LN 156.37 10 6.40 
Life Scatter LN 1 0.1 10.0 

 
For a service life of 750 hours, the pf result for a 
representative POD with and without an inspection at 
either 400 or 500 hours is shown in Figure 7(a).  A two- 
parameter (median and scale) log-logistic POD model 
described in Ref. 10 is used.  Figure 7(b) compares the 
POD with the cumulative distribution functions (CDF) of 
crack size at 400 and 500 hours. The information is 
useful for inspection optimization. For example, the POD 
will be more effective at 500 hours than at 400 hours 
because the defect CDF is closer to the POD.

(a)                                                                             (b) 

Figure 7. Plate Model Result Using ANSYS FE Model (Full RBDT Analysis) 
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The total number of FE and NASGRO analyses was 
220.  In general, the number of FE analyses is an 
increasing function of the number of input random 
variables associated with the stress, while the number of 
NASGRO analyses depends on the number of input 
random variables associated with the component life.  
Additionally, each importance-sampling point requires 
one FE analysis and one NASGRO analysis.  

The total CPU time using a desktop PC for the analysis 
is 240 minutes. Of that, 216 minutes are for the 
NASGRO analyses.  In general, for large complicated 
FE models, the required CPU time for FE may become 
dominant.  For the NASGRO analyses, the CPU time 
needed is roughly proportional to the service life.  

Using the samples generated from the importance-
sampling method, the risk sensitivities, defined as the 
sensitivity of the pf  with respect to each input standard 
deviation, are calculated for the “with” and “without” 
inspection cases [Refs. 1, 11]. The sensitivities are then 
normalized so that they sum to one.  Figure 8 compares 
the sampling-based sensitivities with the standard 
FORM-based sensitivities, also normalized.  The results 
suggest that both methods provide consistent 
sensitivities. In this example, the uncertainty in the 
applied load is clearly the dominant random variable. 
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Figure 8.  Risk Sensitivities for the Plate Model 
 
Plate Model Using Simplified Random Variables 
 
To further investigate the RBDT inspection issues, the 
stress is fixed and the random variables are limited to 
initial defect size and POD.  A thickness of 4.54 mm is 
selected to meet the reliability target of 0.9 with a service 
life of 1000 hours. 
 
Figure 9 shows the results of pf  for the three POD 
curves representing poor, practical, and excellent NDI 
capabilities.  A single inspection time at 500 hours is 
used to compare the effects of these curves.   The result 
shows that the POD and optimal inspection time can 
have significant impacts on risk management.  

 

Figure 9. Risks for the Simplified Plate Model Example for Three PODs 

LUG MODEL 

The second selected model is a helicopter spindle lug 
shown in Figure 10 [Ref. 10].  Figure 11 shows the 
NASGRO model and the 1-hour load spectra used in the 
RBDT analysis.  The random variables are listed in 
Table 3.  A simplified stochastic life model used is 
defined as: 
 

modelNCN ⋅=  
(17) 

 
 

 
 
 
 
where  Nmodel is the life model, and C is the life scatter 
random variable.  The load random variable represents 
the point load applied to the center of the pin, P, in 
Figure 11.  The initial defect size distribution and the 
POD are the same as the ones in the previous plate with 
a hole model.   
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Table 3. Random Variables for the Lug Model 
 

  Distribution Mean Std. Dev. COV(%)
Thickness, t (mm) LN 28 0.14 0.50 

Max. Load (N) LN 145000 10000 6.9 

Initial Flaw Size (mm) User-defined 0.074 0.0224 30.2 

Delta Kth LN 48 4 8.33 

Life Scatter LN 1 0.1 10.0 

Reference R = 0.25 m, Thickness = 67 mm, Initial flaw size = 0.4 mm

P = 140 KN

 

Figure 10. Spindle Lug (Ref. 10) 
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Figure 11.  Spindle Lug Example 
 

Since an analytical stress formula is available, no FE 
analysis is needed.  Using the importance sampling 
method, 200 samples are used for simulating the 
inspection. Figure 12 shows that the inspection at 400 
hours does not result in a significant risk reduction. The 
CPU time for the analysis is 150 minutes, mostly for 
NASGRO analyses. The risk sensitivities are shown in 
Figure 13.  The most significant uncertainty is initial 
defect. 

 
 

Figure 12.  Risk Result for the Lug Model 
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Figure 13.  Risk Sensitivities for the Lug Model 

CONCLUSIONS 

An RBDT methodology has been developed and 
demonstrated using a software tool that integrates 
reliability methods (ProFES), a finite element analysis 
code (ANSYS), and a fracture mechanics code 
(NASGRO 3.0). The developed RBDT methodology 
includes an efficient two-stage conditional importance-
sampling method for pf with inspection analysis.  The 
examples suggest that the approach is well suited for 
inspection planning, and seems quite generic for 
application to other structures, including aircraft engines 
and wings. Additionally, based on a sampling-based 
sensitivity analysis method, the generated samples can 
be directly used to identify and rank input random 
variables.   
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The study demonstrates that the RBDT methodology 
can be implemented by integrating existing software 
tools with added robust and efficient reliability analysis 
methods.  The RBDT approach can provide quantified 
reliability, identify important variables, and support 
optimal inspection planning. It provides additional 
information to supplement the safe-life and deterministic 
damage tolerance approach. 

From the examples, we have learned that even with the 
efficient sampling method, the NASGRO analyses are 
time consuming (several hours).  The CPU time would 
increase even more if larger FE models were used.  To 
reduce the time, approximate stress, crack size, and life 
models are needed. More advanced response surface 
methods with error-checking procedures are highly 
desirable.  

Because of the time constraint, Step 2 (Eq. 6) in the 
importance-sampling approach that was designed to 
check/enhance the FORM solution has not been 
implemented. The proposed checking procedure is 
believed to be important and should be implemented in 
future RBDT software.  Further study is highly desirable 
to determine how to select the adjustment factor, A, in 
Eq. 5, and to investigate the performance of the method.  

Additional research and development is recommended 
to: 
• use industrial models and data to further test and 

improve the methodology and identify critical data 
needs. 

 
• further develop an efficient inspection-time 

optimization methodology for multiple inspections, 
and study the key issues related to POD and 
inspection/maintenance planning. 

 
• develop automatic error-checking methods for the 

response surface methods and the MPP-based 
reliability analysis methods. 

 
• develop a fully automated analysis software system 

that can handle multiple critical components and 
multiple locations and generate optimal inspection 
and maintenance plans. 
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